

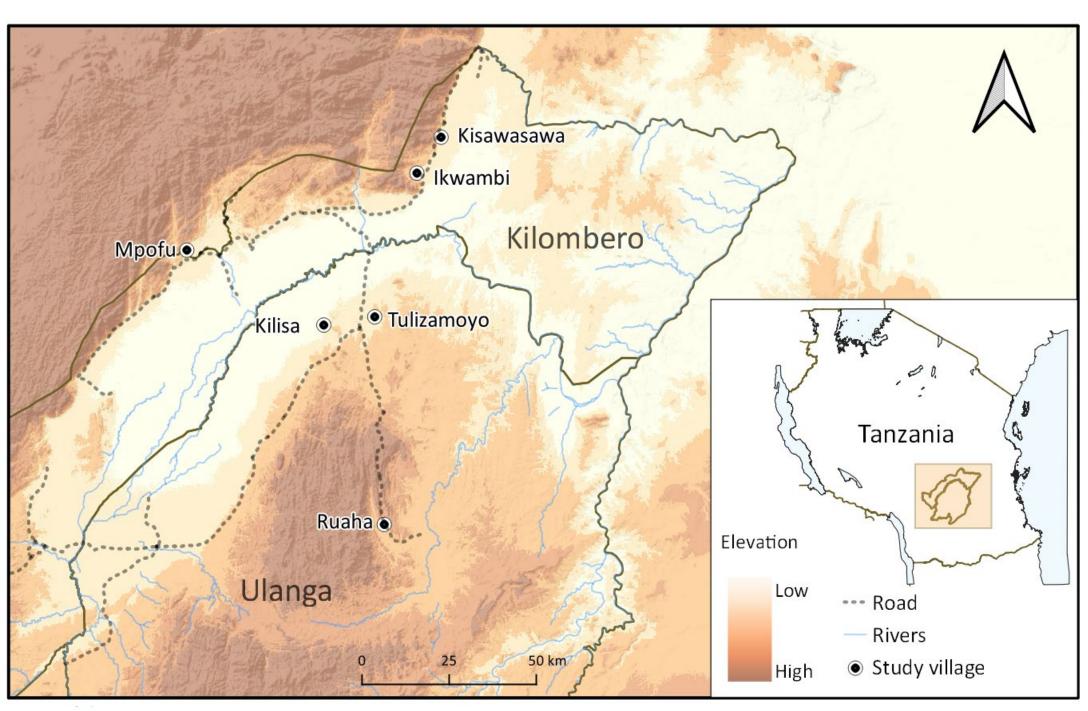
Characteristics of *Anopheles funestus* larval habitats in south-eastern Tanzania

Ismail Nambunga

Environmental Health & Ecological Sciences
Ifakara Health Institute, Tanzania

	T	
	Anopheles arabiensis	Anopheles funestus s.l
Total number of mosquitoes collected by CDC Light Trap (Jan 2015 to Jan 2016)	20135	4759
Total number of trap nights	1152	1152
Biting rate per night	17.48	4.13
Relative efficiency (CDC-LT) relative to HLC (Derived from Okumu et al 2008)	0.3	0.68
Corrected biting rate	58.26	6.08
Total number of mosquitoes analysed for <i>Plasmodium falciparum</i> circumsporozoite protein (CSP)	20135	4759
Total number of sporozoite positive mosquitoes	4	25
Sporozoite rate	0.0002	0.0053
Annual EIR (Adjusted)**	4.22	11.65
% EIR Contribution (Adjusted)**	26.61%	73.39%
Annual EIR (not adjusted)	1.27	7.92
% EIR Contribution (not adjusted)	13.79%	86.21%

Kaindoa *et al.* (2017)


- Their larval habitats were characterized to understand the basic cues influencing their oviposition
- This will help to develop new ways for targeting these habitats for malaria control

Objectives

- Identification and characterization of the larval habitats of An. funestus
- Assessing physicochemical characteristics of An. funestus larval habitats

5

ISO 9001: 2015 certified

Physicochemical characteristics

- Conductivity (µS/cm)
- pH
- Temperature (°C)
- Tds (mg/L)
- Nitrate (mg/L)
- Turbidity (NTU)

Findings

- At lower altitudes<300m
 - Spring-fed
 - Swamps

- At higher altitudes
 - >400m
 - Rivers

Clear water

Emergent vegetation

Depth: >50cm

11

	Univariate analysis	
	Odds (95% LC, UC)	p-value
Water color		
Clear	1	
Colored	0.17 (0.06, 0.47)	< 0.001
Polluted	0.11 (0.01, 0.97)	< 0.05
Vegetation type		
None	1	
Submerged	0.73 (0.07, 7.95)	0.799
Emergent	7.63 (2.03, 28.70)	<0.01
Floating	2.44 (0.53, 11.17)	0.249
Dan Ha (ana)		
Depth (cm)	4	
<50	1	0.007
>50	2.17 (0.95, 4.96)	0.067

- pH **6.5-6.7**
- Temperature **25.2-28.8**°C
- Nitrate level 2.9-6.6 mg/l
- Conductivity 134-165 μS/cm
- TDS 60.5-80.3 mg/l
- Turbidity 26.6-54.8 NTU

Rivers too are important aquatic habitat of *An. funestus*

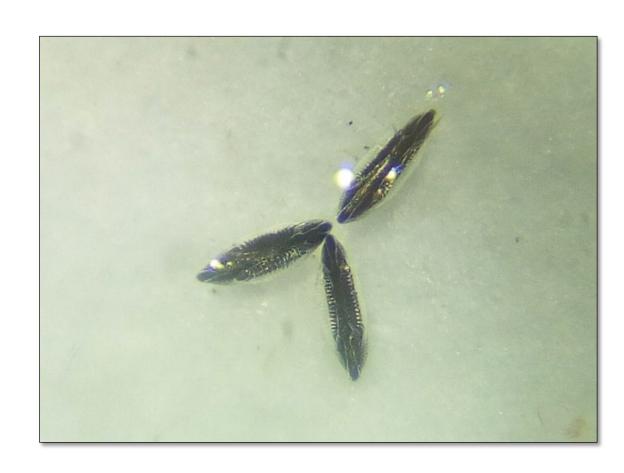
At Ruaha in Ulanga district

- Clear water
- Emergent vegetation
- Slow moving water
- Near human habitations (<100m)

Conclusion

- Bred in both lower and higher altitude areas
- An. funestus bred in the clear water
- Characterized by emergent vegetation
- Deep habitats (>50cm)
- Control strategies should consider these habitats when designing for a new intervention

Points for discussion


- Is larviciding feasible in these kind of habitats?
- Which are the most appropriate methods?
 - Spraying?
 - Drones?
 - -By hands?
- What would be the best timing of larviciding?
- What would be the optimal duration of larviciding?
- Are the habitats similar in other settings?

Acknowledgement

- Fredros Okumu
- Emmanuel Kaindoa
- Volunteers
- Community members
- Other researchers at Ifakara Health Institute

