

LLIN DURABILITY

Objectives

- Monitor durability of LLIN distributed through mass campaigns in 2-3 sites per country
 - Compare same brand different place
 - Compare two brands same place
- Better understand determinants that drive LLIN durability
- Strengthen capacity
 - To undertake DM and other surveys
 - Specific DM skills

VectorWorks produced:

- Standard protocol for prospective cohort approach
- Complete suite of tools for data collection, analysis and reporting
- www.durabilitymonitoring.org

LLIN Durability Monitoring supported by VectorWorks

÷

VECTOR)WORKS

Scaling Up Vector Control for Malaria Prev

LLIN Durability Monitoring Designs

Different socio-ecological environment - Same/similar LLIN brand

Same socio-ecological environment - Two LLIN brands

LLIN Durability Monitoring Designs

 VectorWorks supports new LLIN durability monitoring activities in 4 countries starting in 2018, handed over at the end of VectorWorks to VectorLinks

Different socio-ecological environment - Same/similar LLIN brand

Same socio-ecological environment - Different LLIN brands

Design

• Representative, prospective cohort study of campaign LLIN

Physical Durability - Outcome

• Combining attrition (nets lost) with integrity (physical condition of net)

Insecticidal Durability - Bioassay

- Insecticidal effectiveness measured by standard WHO cone test
- Also tunnel test for Olyset if failed in cone test

Optimal effectiveness:

KD60 \ge 95% or 24h functional mortality \ge 80%

Minimal effectiveness:

 $KD60 \ge 75\%$ or 24h functional mortality $\ge 50\%$

What we found – physical durability

Comparing same or similar LLIN brands in different settings

VECTOR)WORKS

- Survival analysis confirms:
 - Nampula lowerthan Tete orInhambane
 - Zamfara higher
 than Ebonyi and
 Oyo

USAID

U.S. President's Malaria Initiative

What we found – physical durability

• Comparing two different LLIN brands in similar settings

VECTOR WORKS

- Survival analysis confirms:
 - DuraNet in DRCbetter thanDawaPlus 2.0
 - Olyset in Zanzibar
 worse than
 PermaNet 2.0

USAID

U.S. President's Malaria Initiative

- Comparing two different LLIN brands in similar settings
- 94% of households had non-cohort nets (56% untreated)

VECTOR)WORKS

- Of cohort nets 81% ever used
- But at each time point only 43% to 53% hanging
- Ever hanging nets were only found hanging 60% of times seen

- Survival analysis shows:
 - Some evidence of difference between brands
 - Estimated median survival 4.2 and 3.9 years

• Two different LLIN brands •

VECTOR)WORKS

Scaling Up Vector Control for Malaria Pre-

• Same LLIN brand

What we found – physical durability

DawaPlus 2.0

DawaPlus 2.0

VECTOR)WORKS

Scaling Up Vector Control for Malaria Pri

DuraNet, Royal Sentry, MagNet

Key determinants

- Factors of net use environment and net handling were explored
- Variables were assessed across follow-up surveys
- Composite "net care attitude" score calculated
- There was some variation of the combination or intensity of determinant factors between countries
- But some clear trends across the four African countries emerged

Household recorded very positive net care attitude score across surveys

Key determinants

- A very positive attitude towards net care is preventive
- A net only used by adults "lives longer"
- Never folding up the net during the day is a bad idea
- Having more than two children under 10 year in your HH increases risks to the net
- Type of sleeping place may be important but can be overcome by "good care behavior"
- In some settings female headed households do a slightly better job of protecting their nets

Risk Index

Element and indicator	Sub-	Within	
	category	category	Category
	weight	weight	weight
Net handling factors		100	45
Ever store food in sleeping room		5	
Ever cook in sleeping room		5	
Net hanging		10	
Net NOT tied/folded when hanging	5	60	
Net dried on fence/bush		20	
Environment factors		100	10
House walls grass/mud		10	
Cooking fuel firewood		10	
Rodents seen around house		35	
Sleeping place	100	45	
Bedframe	10		
Mattress	30		
Mat or ground	60		
Net care and repair (risk)		100-x	45
Net care and repair		100	
Recalls "care for your net"		5	
Recalls "repair your net"		5	
Net care attitude score >1.0		90	

 Can we predict the physical durability from knowing the constellation of risk factors at baseline?

Risk Index

- R²=0.53; p=0.004
- A reduction of the risk index by 10 points could extend medium survival by 0.5 years

- Initially many nets were still in the package
- Some were never hung

- We found that use was closely linked to hanging
- And hanging dependent on three major factors
 - Availability of other nets in the household
 - Overall net supply situation in household
 - The physical condition of the net

- Torn and very torn nets were still used, but increasingly less
- Good nets seemed to be hung less

caling Lip Vector Control for Malaria Prevention

Norks

VECTOR)

Hanging of nets

- Two pattern emerged:
- High supply level and non-cohort nets were used first
- Declining supply and cohort nets used quickly but as need arises use of non-cohort nets increased

USAID

U.S. President's Malaria Initiative

• What impact has delay of hanging on survival estimates?

Repairing damaged nets

• Level of repairs varied but seemed to only increase when damage was already significant

Repairing damaged nets

 Survival analysis starting risk of "failure" at time of first hole shows absolutely no impact of repairs on survival in serviceable condition

Insecticidal effectiveness

- At 36 months of follow up DawaPlus had >80% optimal effectiveness in Nigeria but failed in DRC and Kenya (after only 12 months)
- Also good results for PermaNet in Unguja
- Ambiguous results in Myanmar for DawaPlus and PermaNet as low bioassay results at all time points
 - Chemical residue at 36 months >80% with >25mg/m² deltamethrin and in total >50% of target dose

USAIC

U.S. President's Malaria Initiative

Insecticidal effectiveness

- At 36 months follow-up DuraNet in DRC and Olyset in Pemba had >80% optimal performance.
 - Also acceptable after 12 months in Kenya and Liberia
- Royal Sentry and MagNet in Mozambique had >80% up to 24 months, then declined.
 - Still >80% minimal effectiveness
 - Chemical residue by CDC shows median alphacypermethrin of Inhambane: 4.7 g/kg (81% of target) Nampula: 1.9 g/kg (32% of target) Tete: 2.4 g/kg (41% of target)

U.S. President's Malaria Initiative

So what does all this mean?

Do we need to replace nets more frequently

- In some places such as DRC probably, at least temporarily
- In others a longer interval could be considered
 - If we have sufficient evidence that the insecticidal effectiveness keeps up

Would it help to have 'more durable nets'

- Certainly, but how do we make them more durable (what do we need to change) and still be cost-effective?
- How do we provide the evidence that a product will perform better in a "standard" use environment and incorporate that into the procurement process?
 - A problem left hanging in 2014
 - "Resistance to Damage" textile Index
 - Semi-field standardized rapid testing of promising new products

Is there room to improve net care

- Definitely, but we also need to better understand the dynamics and interactions at play
- Definitely should focus on preventive behaviors and not repair

