Using the Entomological Surveillance Planning Tool (ESPT) to integrate human behavioral and entomological data towards identifying gaps in protection in Guna Yala, Panamá

Mario Avila, Ministerio de Salud de Panamá (MINSA)

Malaria Elimination Initiative

UCSF

University of California San Francisco

MINISTERIO DE SALUD

The ESPT

- A decision-support tool for planning entomological surveillance activities, interpreting entomological data, and guiding programmatic vector control decisions.
- Supports question-based programmatic entomological surveillance that is costeffective and tailored to local context and available resources.
- Provides guidance on how to integrate entomological data with key metadata, including human behavioral data to address program priorities.

Malaria in Guna Yala, Panamá

- Panamá is striving to eliminate malaria.
- But malaria transmission remains high in the country's indigenous territories (*Comarcas*)
- Traditionally, heaviest burden of malaria is found in the Comarcas of Guna Yala
 - The Guna indigenous group comprises less than 3% of total population, but shoulder ~90% of Panama's malaria burden.

A boy from Guna Yala sleeping in his hammock net. Photo courtesy of Clinton Health Access Initiative (CHAI)

Are **bed nets** an appropriate intervention in Guna Yala based on **human** and **vector behavior**?

Bednet care in Guna Yala Photo courtesy of Clinton Health Access Initiative (CHAI)

Pilot methods 1/3

- 2 neighboring sentinel sites: Perme, Puerto Obaldia (PO)
- 3 collection periods to include rainy and dry seasons
- 5-7 collection nights per collection period
- Human Landing Catches (HLC) inside/outside in 2 sentinel houses per site (17h00 06h00)
- Human Behavior Observations (HBOs) inside/outside in same 2 HLC houses (17h00 – 06h00)

Pilot methods 2/3: HBOs + HLCs

- In HLC houses, HLC collectors also conduct hourly counting and recording of **HBO indicators** to look at bed net use sleeping patterns:
 - Number of people awake, outside
 - Number of people awake, not under a bed net, inside
 - Number of people asleep, not under a bed net, inside
 - Number of people asleep (or resting/awake), under a bed net, inside

Pilot methods 3/3: HBOs + HLCs

HBO indicators are integrated with **HLC indicators** (Human Biting Rate (HBR) inside, HBR outside) to pinpoint **human-vector exposure: gaps in protection**

Key findings: vector biting behavior (March) HBR inside HBR outside Anopheles per person per hour (Hourly HBR) PERME **PUERTO OBALDIA** 10 1.8 9.5 9 1.6 8.5 8 1.4 7.5 7 1.2 6.5 6 5.5 1 5 4.5 0.8 4 3.5 0.6 3 2.5 0.4 2 1.5 0.2 1 0.5 0 ~100h 1,201,500,100,100,100,100,100,100,000,100,000,100,000,000

At both sites:

Vector biting inside and outside, but primarily outside and during early evening thours

zZ					
-z-	PERME	PUERTO OBALDIA		°0	0
	People go to sleep early and spend less time outside in the evening	People go to sleep late and spend more time outside in the evening socializing	W	Ť	Ř
	Lower bed net use at night	Higher bed net use at night			

Integrating vector and human behavior data

- Next, we integrated the vector biting behavior data (HBR) with the human behavior data, allowing us to obtain the **adjusted HBR**.
- The adjusted HBR is the <u>human biting rate for each activity</u>:
 - \circ It is the product of HBR and the proportion of people observed doing specific activities.
 - For example: you can compute the adjusted HBR for people sleeping without a bed net:
 Proportion of people not sleeping under a net, inside x HBR = adjusted HBR

Proportions of people doing specific activities

Key findings: human-vector exposure

PERME	PUERTO OBALDIA	
		 Adjusted HBR, outdoors, awake, not under net Adjusted HBR, indoors, asleep, not under net Bites prevented by using an net Adjusted HBR indoors, awake, not under net
PERME	PUERTO OBALDIA	
Primary exposure to vectors is indoors, asleep, not under net	Primary exposure to vectors is outdoors, awake, not under net	
Lower bed net use	Higher bed net use	
Outdoor biting accounts for ¼ of exposure to vector biting	Outdoor biting accounts for more than ½ of exposure to vector biting	

Identified gaps in protection in Guna Yala

By integrating mosquito and human behavior data, we identified key **gaps in protection**:

Perme and PO are neighboring communities, yet their **human-vector exposure profiles differed**, due to differences in human behavior rooted in cultural differences:

- **PO** community members spent more time outside during the evening, went to sleep later, and used bed nets more than in Perme.
- **Perme** community members spent less time outside in the evening, went to sleep earlier, and used bed nets less than in PO.

PERME (August 2019)

After bed net campaign in Perme

- Bed net campaign changed the human-vector exposure profile in Perme: more people are now protected by bed nets, leading to fewer people sleeping without using nets.
- Bed net campaign also highlighted key remaining gaps in protection:
 - primary gap in protection in Perme is now outdoors, in the evening.

Bed net campaign posters supporting the bed net campaign. Photo by Élodie Vajda

Answering MINSA's programmatic question

Are **bed nets** an appropriate intervention in Guna Yala based on **human** and **vector behavior**?

Answer:

- Bed nets are an appropriate and effective intervention, but are not sufficient as a sole intervention.
- Other interventions must also be included to address identified gaps in protection, such as outdoor biting.

Key take-aways

- 1. Integrating human behavior data with vector data allows programs to identify where people are being bitten by mosquitoes (gaps in protection).
- 2. Understanding gaps in protection helps programs manage expectations and understand impact of interventions on malaria transmission.
- 3. Human-vector exposure profiles in neighboring communities such as in Perme and PO may differ.

Thank you Gracias

